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ABSTRACT
The exponential growth of web videos brings content based

copy detection into a crucial issue. Besides the image infor-

mation, audio also plays an important role in copy detection.

In this paper, the audio-based copy detection framework is

introduced. Three contributions are presented: (1) the band

energy difference based feature is improved by adding multi-

scale information, which extends the candidate feature sets;

(2) a conditional entropy based method is used to select

16 ordinal relations to generate a more compact and robust

feature combination among the random C16
91 ≈ 2.6 × 1017

combinations; (3) the result-based fusion strategy is intro-

duced to recall the missed true positives. The proposed

algorithm outperforms the traditional coarse fingerprints,

shown by experiments conducted in the TRECVID 2011

Content-based Copy Detection (CCD) database.
Keywords-Conditional Entropy; Fusion, Audio; TRECVID;

Contend-based Copy Detection;

I. INTRODUCTION

The audio copy detection aims at determining if a given

query audio clip has its copies in the database and the

detection system is required to return the time stamps where

the copies are located in the reference audio stream. The

exponential growth of the searchable videos in the web, e.g.

YouTube, brings the task to a new crucial issue. There are

over 700 billion playbacks on YouTube in 2010 [1] and

videos of more than 13 millions are uploaded in the web.

Web users can record videos by digital cameras, mobile

phones or directly downloading from the Internet and publish

data after modifying, which leads to a lot of redundant videos

with the same content. For instance, there are 27% duplicate

videos in the samples of 24 popular queries from YouTube,

Google Video and Yahoo! Video [2]. Generally, image and

audio based information can be both used to implement copy

detection. And most existing copy detection systems focus

more on finding the schemes to handle the various image

transformations. The audio-based algorithm may achieve

better performance when the audio content is relatively

consistent over the video frames of severe transformations,

e.g. camera-coding with depth variation, which is difficult to

deal with by image based algorithm.

Fingerprint system is widely used in audio copy detection

due to its efficiency, robustness, reliability and compact-

ness [3]. Recently, a certain researches study extraction of

audio fingerprints. J. Chen et al.[3] present an algorithm

to extract weighted ASF (WASF) based on a MPEG-7

descriptor-Audio Spectrum Flatness (ASF) and Human Au-

ditory System(HAS); several effective filters are adopted to

improve the robustness of WASF. The similarity between

two WASF features is measured by Euclidean distance,

which is not suitable for efficient indexing due to high

computation cost. And tuning the filter parameters is also

difficult. H.Jegou et al. introduce compound descriptors into

copy detection task[4], which obtains high accuracy via

approximate nearest searching algorithm. However, it is time

consuming to compare descriptors based on Euclidean metric

and solve the high dimension problem, e.g 144 dimensions

for each descriptor. The energy difference between two con-

secutive frequency bands is adopted to extract binary audio

fingerprints [5], [6], [7], [8], which performs well taking the

trade-off between detection accuracy and indexing efficiency

into consideration. Y.Ken et al. [9] introduce computer vision

based method to extract a 32-bit binary audio fingerprint,

which guarantees the efficient indexing but is vulnerable to

distortions. And we observe that there are more than one

half bits describing the specific frequency bands differences

among the 32-bits binary fingerprint. Therefore band energy

difference based fingerprint representation is a good choice

for achieving effective and efficient searching in large-scale

database.

The performance of bands energy difference based algo-

rithm is improved by three contributions: (1) adding more

band information; (2) selecting a strong features combination

from candidate feature sets; (3) presenting the result-based

fusion strategy. Adding the information of multi-scale and

multi bands combinations extends the feature set. In section

III, a conditional entropy based strategy is adopted to get

the discriminative sub feature combination from the set,

which is stable to several audio transformations, such as

mp3 compression, single or multi-band companding, mix
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with speech and the combinations. The feature combina-

tion models an audio frame into a binary fingerprint,which

enables efficient searching by exact inverted indexing. The

result-based fusion strategy is introduced to improve the

system performance by recalling the missed correct detection

due a single threshold. Experiments on TRECVID content

based copy detection database show our method achieve high

accuracy and efficient searching.

The rest of paper is arranged as follows. Section II

describes three different feature extraction algorithms. Sec-

tion III presents the conditional entropy based feature se-

lection strategy. The efficient inverted indexing algorithm

is described in Section IV. The result-based fusion strat-

egy is presented in section V. In section VI, the perfor-

mances of different features extraction and fusion schemes

are evaluated on TRECVID 2011 copy detection database.

Section VII draws a conclusion and lists the further work.

II. FEATURE EXTRACTION
It is a challenge to extract features that meet two criteria of

robustness to severe audio transform and matching efficiency.

The binary representation of fingerprint performs excellent

efficiency through exact searching. Coarse audio fingerprints

introduced in [5], [6], [7], [8] describe the energy difference

between two consecutive frequency bands. And we observed

that 19 bits out of the 32-bit binary feature [9] describe the

energy difference over bands. The experiments show those

features are vulnerable to audio transformation. It motivates

us to improve the coarse fingerprints to be robust to the se-

vere distortions. This section describes the preprocessing of

audio streams and three different audio fingerprint strategies

based on the energy difference over specific bands.

II-A. Pre-processing
The preprocessing contains two main steps: sampling rate

normalization and transformation the temporal audio signal

into frequency domain representation. The sampling rates

of web audio data vary in a large range. Commonly, the

system normalizes data into audio streams with uniform

sampling rate FN = 44100Hz. Generally, frequency domain

representation of audio reflects the signal variation which

is more stable to distortion than the temporal audio data.

The basic step of fingerprints extraction is transforming

the temporal audio signal to its frequency representation.

The frequency spectrum is generated by Fast Fourier Trans-

formation (FFT) on 2048 samples with 50% overlapping

increment. The normalized audio streams are convolved with

Butterworth low-pass filter before FFT, so that there is no

alias in frequency domain.

II-B. Energy difference over consecutive bands
The Energy Difference Feature (EDF) over consecutive

bands is used in [5], [6], [7], [8]. The frequency spectrum

of 300Hz to 4000Hz is divided into fixed N bands in

equally mel-frequency space. A triangular filter is applied

EBn(1) EBn(2) ...> EBn(16) EBn(17)>EBn(3)>

EFn1 EFn2 EFn16
EFn(3…15)

(a) Energy difference feature

EBn(1...8) EBn(9...16)>
CFn1

EBn(1...4) EBn(5...8)>
CFn2

EBn(9...12) EBn(13...16)>

CFn4

>

CFn3

EBn(1...2) EBn(3...4)>
CFn5

EBn(13...14) EBn(15...16)>

CFn11

...

CFn(6…10)

(b) CEPS-like feature

Fig. 1. Extraction of two types of audio features

to the frequency response of each band before computing

the energy. The filter coefficients is defined as:

w(n) =

{
2n

N−1 n = 0, 1, ..., N−1
2

2− 2n
N−1 n = N−1

2 , ..., N − 1
(1)

The energy difference between two consecutive bands is

used to compute the N − 1 bits binary fingerprint for each

audio frame, defined by:

EFn(m) =

{
1 EBn(m) > EBn(m+ 1)

0 otherwise
(2)

where EBn(m) represents the energy value of the nth frame

at the mth sub-band, and m ∈ [1 · · · 17] . The 15-bit and

32-bit fingerprints are used in [6], [7] respectively. After

considering the storage size of short int and robustness of

the searching algorithm, the 16-bit fingerprint EFn(m) is

selected.

II-C. CEPs-like fingerprint
The fixed scale problem is a limitation of the EDF, which

only considers the energy difference in the low level. In

TRECVID 2011 copy detection task, we propose CEPS-like

feature to combine the multi-scale energies into one feature

based on cepstrum. The cepstrum is the information about

the rate of the change in the different spectrum bands and the

result of taking the Fourier Transform (FT) of the log spec-

trum. In Fig.1(b), CFn(1) is the highest-scale feature, which

use all information of 16 sub bands. In the second level,

CFn(2 · · · 4) are the difference of four adjacent sub bands.

CFn(5, · · · , 11) are in the third level. CFn(12, · · · , 16)
are the same with EFn(1),EFn(4),EFn(7),EFn(10) and

EFn(13) respectively. EBn(m1, · · · ,m2) is the energy sum

from the m1th sub band to the m2th sub band.

II-D. Bands energy difference with multi-scale
The proposed audio fingerprint is inspired by the above

two extraction schemes. The EDF and CEPs-like features

both only consider the ordinal measure between two con-

secutive bands. CEPs-like feature doesn’t consider ordinal
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Fig. 2. Multi-scale Band Energy Computation

relations between different scales. And we observe that

the frame number distribution of CEPs-like fingerprint in

database is very sparse and non-uniform. It means that some

subset of bits carry little information and this kind of bit

combinations is not discriminative to specific distortions.

The proposed fingerprint is expected to examine the audio

characteristics that are resistant to distortions, based on the

assumption that audio fingerprints of the large-scale web

videos are uniformly random.

Figure 2 illustrates the procedure of computing the band

energy with multi-scale. Firstly, the preprocessing of audio

stream and the frame frequency spectrum is generated by

FFT, Figure 2(a). Then, the spectrum between 300Hz and

4000Hz is divided into N sub-bands with equally mel-

frequency spaced, Figure 2(b). Fifteen bands are generated in

four different scales, where N ∈ {8, 4, 2, 1}. A correspond-

ing triangular filter, defined in Equ. (1), is applied to samples

of one frequency band, in Figure 2(c). The band energy

values in different scales are normalized by multiplying with

specific weights. The weighted band energy vector of 15

dimensions is shown in Figure 2(d), where E[i,j] indicates

the weighted energy of jth band in ith scale.

The fingerprint describes energy distribution via the en-

ergy ordinal measure of two-by-two bands. The ordinal

measure is represented by relations between two sub-bands.

Totally 105(C2
15) relations are generated in 15 bands, where

14 relations occur twice. Therefore the audio fingerprint

can be represented as a 91 dimensional feature set. The

set is represented as X = {X1, · · · , X91}, where the Xi

denotes the ith value of the feature set X . A sub feature

set XS = {XS(1), · · · , XS(M)} needs to be selected as the

compact and discriminative feature. The conditional entropy

based binary feature selection method is presented in the

next section. In the rest of this paper, “CE EDF” is used

to represent the conditional entropy based binary audio

fingerprint.

III. CONDITIONAL ENTROPY BASED FEATURE
SELECTION

The binary feature selection method aims at selecting

a subset from the high dimensional feature set X =

{X1, · · · , X91} to form a strong and compact fingerprint

which enables the efficient exact searching with inverted

indexing, as described in section IV. The candidate subset

feature combinations is very large. For example, if M is

chosen to be 16, the number of feature combinations is

C16
91 ≈ 2.6 × 1017. Therefore, an efficient feature selection

method is needed. The conditional entropy based informative

ordinal relations selection scheme is the obvious choice,

which is introduced by L. Shang et al. to select image CE-

based spatiotemporal features in [10]. The main goal of this

scheme is to select a subset of features which carry the

information as much as possible.

The procedure of feature combination selection is pre-

sented in Algorithm 1. The training data is the sequence of

N feature samples, X1, · · · , XN , where N is the number of

extracted audio frames. Xj
i denotes the jth relation value

for ith frame. The algorithm returns a kind of sub-set

features combination, XS = (XS(1), · · · , XS(M)), which

is informative and two-by-two weakly dependent. First, the

most informative relation is selected as the XS(1), namely

H(XS(1)) ≥ H(Xn), 1 ≤ n ≤ 91. H(Xn) denotes the

entropy of relation Xn in the database, defined as:

H(Xn) = p(Xn = 1) log p−1(Xn = 1)

+p(Xn = 0) log p−1(Xn = 0) (3)

where p(Xn = 1) denotes the probability of the relation

Xn = 1 occurring in the database:

p(Xn = 1) =
#(frames having Xn value of 1)

N
(4)

and p(Xn = 0) = 1−p(Xn = 1) indicates the probability of

the relation Xn = 0. The feature set of X = {X1, . . . , X91}
is updated by subtracting the XS(1). In the second step, the

rest M−1 relations are selected iteratively. The mth selected

relation satisfies the criteria:

S(m) = argmax
n
{ min
k≤m−1

H(Xn|XS(k))}, Xn ∈ X (5)

where H(Xn|XS(k)) denotes the conditional entropy of Xn

on XS(k), defined as:

H(Xn|XS(k)) = H(Xn, XS(k))−H(XS(k)) (6)

The minimization of conditional entropy guarantees the

weak dependency between two selected features. The maxi-

mization of mink≤m−1H(Xn|XS(k)) ensure that the newly

selected relation is informative in the feature set.

Table I lists the top 16 ordinal relations, XS(n)n ∈ [1, 16],
picked by the selection algorithm, where E[i,j] indicates

the energy of jth band in ith scale. These selected rela-

tions are used to generate the M dimensional fingerprint

F = {I1, I2, ..., IM}, where Ik = 1XS(k) , k ∈ [1,M ], 1XS(k)
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Algorithm 1 Informative Fingerprints Selection

Input: The sequences of N features samples with 91 di-

mensions,

X1 ← (X1
1 , ..., X

91
1 ), ..., XN ← (X1

N , ..., X91
N ),

and initialize the number of selected features M
Output: The combination of M informative and two-

by-two weakly dependent CE EDF feature XS ←
(XS(1), ..., XS(M))
Step 1:
Find the first feature element of XS that maximizes

H(Xn), n ∈ [1, 91]
Update the feature set: X ← X −XS(1)

Step 2: for m = 2 · · ·M
Find the mth element of XS that maximize the set of

conditional entropies mink≤m−1{H(Xn|XS(k))}, Xn ∈
X
Update the feature set: X ← X −XS(m)

Table I. The top-16 selected band energy ordinal relations
Feature Relation Feature Relation

XS(1) E[1,5] > E[2,3] XS(9) E[1,4] > E[2,2]

XS(2) E[1,2] > E[3,1] XS(10) E[1,5] > E[2,4]

XS(3) E[1,3] > E[2,2] XS(11) E[1,8] > E[2,4]

XS(4) E[1,7] > E[2,4] XS(12) E[1,3] > E[1,5]

XS(5) E[2,2] > E[4,1] XS(13) E[1,4] > E[1,6]

XS(6) E[1,6] > E[1,7] XS(14) E[1,6] > E[2,3]

XS(7) E[1,1] > E[3,1] XS(15) E[1,6] > E[1,8]

XS(8) E[1,4] > E[1,5] XS(16) E[1,2] > E[2,3]

is the indicator function with value of 1 if the relation XS(k)

is true and 0 otherwise.

M is set to be 16 in experiment so that it enables

efficient exact indexing by representing the fingerprints with

an unsigned short integer. And the storage requirement for

a average length of 600s audio file is approximately 62KB.

IV. INVERTED INDEXING

The exact searching scheme is proposed to achieve ef-

ficient indexing. The inverted indexing with direct hashing

is a obvious choice. All the fingerprints of reference audio

are hashed into the inverted indexing table, keyed by the

fingerprint value. The value can be represented by a unsigned

short integer for the 16-bit fingerprint. The indexing strategy

is shown in Fig. 3. Fig. 3(a) shows the sequence of hash

values in a querying clip. And these values directly hash the

ones in the inverted index table, shown in Fig. 3(b). The

voting tables record the the voting number of the query and

a specific reference clip. The voting number are the hitting

value with the same frame difference between indexes of

the matched reference and querying. The voting strategy is

illustrated in Fig. 3(c)(d)(e). The voting candidate with the

maximum value of Nvote is selected as candidate, e.g. (c) is

the candidate. The time duration of the queried sequence is

[j, j + n+ 1] in the reference database.

Fig. 3. Samples of the Inverted Indexing

Fig. 4. The result-based fusion of two different fingerprints.

Nvote = argmax
τ

∑
r,q∈N

δ(τ − |r − q|) (7)

where r and q are the time indexes of the matching sequence

of the querying and reference. If Nvote is greater than the

predefined threshold T , the reference sequences are regarded

as the final results.

V. RESULT-BASED FUSION
Figure 4 illustrates the fusion of results given by two

different audio fingerprints. The results of one fingerprint are

reserved if the confidences are higher than a relatively high

threshold. And the results with lower confidence are reserved

if the same reference file are detected by two different

fingerprints. The final results are generated by applying the

“OR” to those reserved results.

The fusion results outperform any single fingerprints,

described in experiment section; it indicates that the several

correct detection results are missed due to their confidences

are lower than the specific threshold.

VI. EXPERIMENTS
In this section, the performance of the proposed algorithm

is evaluated on the TRECVID 2011 copy detection database.

VI-A. Database Description
The well-known TRECVID content-based copy detection

database [11] consists of two parts: the reference datasets and

query clips. The reference data contains 11187 video files,
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totally 400 hours. There are 8-type video and 7-type audio

transformations in query data. The seven transformation

types of audio based detection task are described as:(T1)do

”nothing”;(T2)mp3 compression;(T3)mp3 compression and

multiband companding;(T4)bandwidth limit and single-band

companding;(T5)mix with speech;(T6)mix with speech, then

multiband compress;(T7)bandpass filter, mix with speech,

compress.

The reference 11187 audio streams contains total 70

million frames. The non-silent 1.7 million frames are ran-

domly picked to train the 16 informative ordinal relations as

described in section III.

VI-B. Parameter setting and performance

Three methods of band energy difference based fingerprint

extraction are compared in this section: EDF, CEPs-like

and CE EDF. The performance are evaluated on different

parameter T settings, where T is the decision threshold

mentioned in section IV. Empirically, the T varies in 10,

22, 30 for EDF; 15, 20 ,40 for CEPS-like fingerprint; 40,

50, 65 for CE EDF. Fu-1 indicates the result fusion of

EDF and CEPs-like fingerprint; Fu-2 is the fusion of EDF

and CE EDF;and Inria is used to describe the compound

descriptors, used by INRIA-LEAR, introduced in [4]. The

Actual Normalized Detection Cost Rate(NDCR) and F1-

Measure are used to measure the detection performance.

Table II shows the detection results measured by actual

NDCR metric. Generally, the performance of CE EDF is

better than other features. The NDCR of fusion are lower

than detection result of using any single feature. The best

NDCR value of this system is 0.321 given by fusion of EDF

and CE EDF features. It is due the recalling several correct

detection results which are missed, where the confidences

are lower than the predefined threshold T . And for any

single fingerprint, merely reducing the value of T to recall

the missed correct detections leads to the NDCR increasing

with more false alarms. In table II, our audio-based querying

results outperform the compound descriptors. For example,

in the T1 case, our and Inria’s actual NDCRs are 0.321 and

0.634, respectively.

Table III shows results of different fingerprints and fusion

measured by actual F1-Measure. The F1-Measure reflects

the performance of time localization. The F1-measure is

evaluated only for time stamps of correct detected reference

copies. The missed and false detected videos have no impact

on the value of F1-measure. As shown in the table, opposite

to the results of NDCR, the F1-measure of CE EDF is gen-

erally worse than the other features. It can be explained that

more true positive copies ,missed by other fingerprints due to

its severe transformations, are detected by CE EDF, however

the time localization of those copies are not accurate. Table

III also indicates that the F1-measures of our algorithm,

with lower NDCR, are comparable to the measurements of

INRIA-LEAR’s compound descriptors.

Table II. Actual NDCR of each fingerprint and fusion varied

with threshold T
T1 T2 T3 T4 T5 T6 T7

EDF-10 1.808 1.175 1.533 1.602 1.081 1.240 1.307

EDF-22 0.343 0.448 0.500 0.480 0.657 0.672 0.761
EDF-30 0.410 0.584 0.597 0.577 0.709 0.776 0.813

CEPS-15 2.007 1.915 0.838 1.481 1.006 0.637 0.776

CEPS-30 0.428 0.517 0.823 0.599 0.679 0.724 0.724
CEPS-40 0.465 0.599 0.761 0.746 0.679 0.791 0.746

ceEDF-40 0.465 0.639 0.940 0.823 0.604 0.621 0.778

ceEDF-50 0.396 0.515 0.575 0.381 0.597 0.753 0.679
ceEDF-65 0.463 0.537 0.694 0.463 0.724 0.714 0.721

Fu-1 0.321 0.527 0.396 0.520 0.562 0.500 0.545

Fu-2 0.321 0.420 0.396 0.413 0.562 0.500 0.545

Inria 0.634 0.520 0.507 0.520 0.540 0.642 0.455

Table III. F1-measure of each fingerprint and fusion varied

with threshold T
T1 T2 T3 T4 T5 T6 T7

EDF-10 0.901 0.891 0.912 0.884 0.866 0.875 0.867

EDF-22 0.906 0.910 0.926 0.899 0.896 0.876 0.932

EDF-30 0.920 0.932 0.933 0.920 0.932 0.913 0.946
CEPs-15 0.887 0.879 0.914 0.916 0.855 0.863 0.880

CEPs-30 0.886 0.899 0.923 0.931 0.900 0.889 0.917

CEPs-40 0.903 0.921 0.930 0.951 0.902 0.906 0.919
ceEDF-40 0.906 0.909 0.894 0.909 0.891 0.887 0.893

ceEDF-50 0.908 0.921 0.900 0.923 0.885 0.913 0.891

ceEDF-65 0.921 0.925 0.911 0.938 0.879 0.932 0.920

FU-1 0.901 0.890 0.917 0.885 0.865 0.874 0.869

Fu-2 0.901 0.890 0.917 0.885 0.865 0.874 0.869

Inria 0.939 0.937 0.904 0.939 0.923 0.853 0.923

VI-C. Performance of fusion strategy
In table II, Fu-1 indicates fusion result of EDF and CEPs-

like and Fu-2 is the fusion of EDF and CE EDF. The

NDCR of fusion is lower than any single feature. The

best NDCR value of this system is 0.321 given by fusion

of EDF and CE EDF. Two types of missed true positive

detections are recalled, so fusion of fingerprint A and B

gets the better performance: (1) As correct detections with

confidences higher than TA are absence of the Bs and

vice versa; (2) the detections of A and B have the same

reference video ID, of which the confidences are lower

than TA and TB respectively. The first one indicates that

mutual complementation occurs in the result region of high

confidence, and the second shows that it is able to combine

difference features to form a strong voting scheme to classify

the the region of low confidence. And we observed that

much more missed true positive detections belong to second

type. In this case, the F1-measures of fusion decrease due

to recalling missed severe transformed copies in which the

time localization is inaccurate, shown in table III.

VI-D. Distribution of fingerprint
The proposed feature extraction algorithm aims at map-

ping the audio data into fingerprints with uniform dis-

tribution based on the assumption that videos over web

are uniformly random. Fig.5 shows that the distribution of

different fingerprints in database is plotted in 128 contiguous

buckets. The bucket is generated by equally dividing the 216
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Fig. 5. Fingerprints distribution in database.

fingerprints space. The three fingerprints database distribu-

tion is more or less uniform. The exitance of some impulses

is due to several reasons:(a)the a large amount of silent

audio frames lead to the largest frequency value occurring in

the first bucket; silent audio frame has the fingerprint value

of 0; (b)there are several fingerprints value of which the

frequency in database is 0; (c)a lot of audio streams have

similar content in reference database.

The CE EDF fingerprints have more uniform distribution

than EDF and CEPs-like shown in Fig. 5(c), due to two

advantages of the feature selection algorithm. First, the al-

gorithm weakens the dependency of any two dimensions; the

uncertainty of determine unknown bits is larger if some bit

values are given. Second, the most informative relations in

database are selected; for a set of specific random variables,

the distribution is more uniform, the entropy is larger.

VII. CONCLUSIONS AND FURTHER WORK
In this study, two steps are adopted to generate the ro-

bust and compact audio fingerprint CE EDF: adding multi-

scale information to extend band energy difference based

features and selecting the strong feature combination from

the extended candidate feature set. The better performance

given by fusion of two different features shows that a certain

amount of correct detection results are missed due to single

threshold problem. Many researches need to be done to

improve the quality of detection are listed as follows:

A. The number of audio frame in the database is near

70 million. It is very time consuming if using all the

frames to do feature selection with conditional entropy based

algorithm. We randomly picked up 2.4% frames to select

ordinal relations. Perhaps we should improve the selection

algorithm so that it can handle the large amount of training

data.

B. Is it possible to select the strong audio feature combi-

nation with classical algorithms such as Adaboost and SVM?

And the performance comparison is needed.

C. Perhaps, for a single feature, a result refinement algo-

rithm are needed to classify the correct and error detection

results of which the confidences are low.

D. A modified indexing method is need to increase the

accuracy and F1-measure without impact on the indexing

efficiency.
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