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ABSTRACT
Image search reranking has become a widely-used approach
to significantly boost retrieval performance in the state-of-art
content-based image retrieval system. Most of the methods
merely rely on matching visual distances between query and
initial results or among initial results to detect confident sam-
ples relevant to query. However, they may fail to rerank due to
the existence of a huge gap between low-level visual features
and high-level semantic concepts.

In this paper, we propose to detect reliable relevant sam-
ples based on a semantic image graph of labeled auxiliary
dataset and Markov random walk algorithm. A graph-based
rerank method is then presented to propagate the scores of de-
tected confident samples to the rest. Our method is evaluated
on the standard Paris dataset and a new France dataset intro-
duced by us. The performance is demonstrated to match or
exceed the state-of-art.

Index Terms— Image seach reranking, semantic graph,
random walks

1. INTRODUCTION

Image retrieval and reranking have been one of attractive
and challenging researches in the recent multimedia areas.
Prevalent engineers of content-based image retrieval (such as
Google Goggles) provide results relying on matching visual
features of a query image to dataset. However, a large pro-
portion of the initial search results is not relevant to the query
image because a huge semantic gap exists between low-level
visual features and high-level semantic concepts.

In order to offer a better user experience, the initial search-
ing results should be reordered to improve the retrieval per-
formance. The basic principle is to detect confident samples,
considered as pseudo-positive samples, who will help rerank
the rest of images. In the early work, top ranked images are
directly taken as pseudo-positive samples to take part in the
following rerank process [1, 2, 3]. However, these methods
may not improve the performance or even worse it because
false-positive samples always exist in the top list.
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Fig. 1. (a) query image of Invalides in Paris. (b) The ini-
tial ranking results where green rectangular tags inliers and
red for outliers. The second and the forth are Pantheon and
Sacrecoeur in Pairs respectively. (c) Results after reranking.

In the recent researches, more reliable confident samples
are learned to select instead of simple top N images of the
initial list. One kind of reranking techniques tries to construct
a new query from confident sampes selected by robust spa-
tial verification[4, 5, 6]. [4] uses a RANSAC-like geometric
verification to remove false-positive samples and averages top
confident samples to form a new query. In [5] min-hash is ap-
plied to detect noises in query images while [6] also learns
models of noise features. The query region filtered out noises
is taken as a new query to retrieval. The principle restriction
of these methods is that they depend significantly on geomet-
ric verification, whose failure will lead to a collapse of query
expansions. Another kind of reranking method selects pseu-
do positive samples based on the mutual visual relationships
among top images in the initial ranking list [7, 8]. Depend-
ing on the observation that outliers are less popular and more
visually distinct than inliers, [8] introduces sparsity and rank-
ing constraints to discover confident samples and rerank with
kernel-based scheme. However, these methods may fail when
the irrelevant images are uneasily distinguished from the rel-
evant images visually.

An example is shown in Fig. 1 where irrelevant samples
in the initial top ranking list have high visual similarity to the



query, as well as relevant samples. In this case the previous
methods may not work because they merely rely on compar-
ing the low-level visual features distance to detect confident
samples.

However, we observe that even though the visual dis-
tances between inliers and outliers are close, their tags or
high-level concepts are obviously distinct, such as Invalides
and Sacrecoeur. Inspired by [9] in which a semantic mani-
fold is embedded to measure the image distance, we intend
to merge semantic information to pick out the semantically
relevant images and pull down those semantically irrelevant.

In this paper, we propose to establish a semantic graph for
auxiliary datasets of images, where every vertice is a labeled
image and an edge links a pair of images who are semantical-
ly close. In [9] a semantic graph is established on ImageNet
[10] dataset organized in a tree structure. Instead we treat
each class in the test dataset independently due to the indepen-
dence of concepts in our test dataset. Then top m initial re-
sults are utilized to select confident samples by a Markov ran-
dom walk [11] inside the semantic graph. Finally, the rest of
images are reranked based on the same graph where scores of
detected confident samples are propagated. The performance
of our algorithm is evaluated on standard Paris dataset, and
France landmark dataset which is crawled from Flickr, Bing
and Google using queries of famous 78 France landmarks and
24 artworks in Louvre Museum.

The rest of this paper is organized as follows. Section
2 describes the process of building the semantic graph, de-
tecting confident samples and reranking the rest relying on
Markov random walk. In section 3 the performance of our
algorithm is evaluated and compared with the state-of-art.

2. RERANKING

Our approach consists of two stages: off-line stage during
which a semantic graph is built with labeled auxiliary data,
and on-line stage in which confident samples are selected and
reranking is applied.

We first define notations used in this paper. Let auxil-
iary dataset be D = {(x1, y1), · · · , (xN , yN )} of N images,
where xn is a low-level visual feature and yn is the class la-
bel of image In. A weighted semantic graph is denoted by
G = (V,E,w), where V is the set of vertices and E is the set
of edges with a weight function w : E → R+. The matrix of
graph G is defined as W ∈ RN×N , where wij represents a
weight associated to edge (i, j) ∈ E. In addition, h∗ ∈ RN

is defined as an initial ranking vector, where h∗
i is non-zero

if Ii belongs to initial ranking images set H or 0 otherwise.
Similarly, we denote h ∈ RN as a confident samples vector,
where the element is non-zero if its corresponding image is a
confident sample. Let f be a function of detecting confident
samples as:

h = f(h∗,W) (1)

Then the scores of detected reliable samples are propagated
to rerank the rest images, giving the function

r = g(h,W) (2)

where r ∈ RN is a reranking vector and ri is the score of
image Ii.

2.1. Semantic Graph Building

The aim of building a graph is to connect the images which
are visually as well as semantically related. Each vertex of
G is a labeled image I in the auxiliary dataset, while each
edge connects two of them undirectly. A weight is assigned
to each edge to reflect the similarity between the two vertices.
Throughout the paper we may refer to the elements of V as
the corresponding images.

Instead of linking every two vertices, we only connect one
vertex to its k closest neighbors within the same class, which
results in a sparse graph. For each vertex i, K(i) is defined
as a set of its k nearest neighbors whose class labels y equal
to yi. It is worth noting that the k closest neighbors include
the target itself, representing self-transition. The similarity
between Vi and Vj is computed through L1 distance between
low-level visual features as:

sij =
1

1 + ||xi − xj ||1
(3)

The edge weights are normalized starting from one node to its
k connected neighbors so that rows of the graph matrix sum
to 1. Therefore wij is defined as:

wij =


sij∑
n sin

if j ∈ K(i)

0 otherwise
(4)

In this way, each vertex is linked with those which share
a high visual and semantic similarity. On the one hand, we
only find the neighbors of the target node in its own class,
which enables a semantic filtering and exploits a semantic co-
herence. On the other hand, for images that are highly close
in semantic, visual feature distance guarantees a reliable mea-
sure for similarity.

2.2. Confident Samples Detection

The fundamental idea of this confident samples detection ap-
proach is that given a probable initial vertices distribution of
a query, a final nodes distribution is found after a Markov ran-
dom walking [11] inside the semantic graph.

Specifically, for a query image Iq , we firstly select top m
similar images from the auxiliary dataset as candidate nodes
set Vh∗ . The similarity measure for initial ranking result re-
lies on visual distance, so that an initial ranking vector h∗ is



defined as:

h∗
i =


sqi∑
n sqn

if n ∈ Vh∗

0 otherwise
(5)

In order to find out nodes that are semantically close to the
majority of Vh∗ , Markov random walk is applied to pick out
relevant nodes in dataset and suppress noises in Vh∗ . Accord-
ing to [11], for an edge (i, j) one step transition probability
from node i at time t to node j at time t+ 1 is

Pt+1|t(j|i) =

{
wij if (i, j) ∈ E

0 otherwise
(6)

The graph matrix W can be considered as Markov transition
matrix. Since W has been normalized in terms of row, the
probabilities of starting from vertex i to other vertices are sum
to one. Remembering that the k nearest neighbors include
target vertex itself, we add self-transitions to the vertex so
that wii is neither zero nor one.

Now given an initial vertices distribution h∗ and a transi-
tion matrix W, the reached vertices probability distribution h
after one step of random walk is:

hT = h∗TW (7)

We observe that relevant samples are more semantically ag-
gregated in the top ranking list while classes that irrelevant
samples belong to are usually more diverse. Due to this ob-
servation, the connected and nearby nodes will enhance each
other and the disperse nodes will be suppressed through ran-
dom walk.

After one step of random walk, new weights stored in h
are assigned to each vertex i ∈ V , which are then sorted in a
descending order. Intuitively top ranking nodes are more re-
liable than bottoms, therefore an adaptive threshold T is cal-
culated to discard the bottom nodes as follows:

T =
1−

∑
hi>α hi

n
(8)

where n is the number of vertices whose weights are less than
α. If hi < T , the corresponding vertex Vi is discarded, i.e.
hi = 0. It means that when the probability mainly distribute
on the nodes with weights larger than α, the node whose prob-
ability is even less than the average distribution of the left n-
odes will be considered less reliable.

One run of a random walk is insufficient to recall enough
confident samples. Therefore, the updated h is normalized
again, considered as the positive feedback for the next ran-
dom walk inside the semantic graph. The process is repeated
r times so that more confident samples are selected and at
the same time the order of them are reranked, illustrated in
Algorithm 1.

In this way, images which are visually as well as seman-
tically similar to the majority of the initial ranking list are
selected as confident samples, and noises that have either di-
verse visual features or different class labels are removed.

Algorithm 1: Confident samples detection
input : initial ranking vector h∗, graph

G = (V,E,w), random walk times r
output: confident samples vector h

i := 0
while i < r do

hT = h∗TW
sort h
calculate T
if hi < T then

hi = 0
normalize h

h∗ := h
i := i+ 1

2.3. Graph Reranking

The high-level idea of our reranking approach is to close the
rank of two images whose path in our semantic graph is short.
In terms of ranking vector this means that two similar images
will have close weights.

Based on this intuition, we make use of the the confident
vertices set Vh to solve the following objective function as:

ht+1 = arg min
h

∑
(i,j)∈E

(ht
i − ht

j)
2wij

subject to ht+1
i = ht

i if i ∈ Vh, t = 1, 2, ..., l

(9)

which is a convex optimization problem. Specifically, at time
t the two vertices with higher similarity are forced to have
similar weight at time t+1 to minimize the whole costs. Also,
the constraint ensures that ranking vector will keep the weight
of confident vertices. After each step, h is re-normalized and
Vh is updated. The process will be repeated l times and the
final reranking vector r = hl.

This problem could be solved by a simple system of linear
equations based on random walk in [12]. Note that [12] re-
quires the Laplacian matrix of G must be nonsingular. Since
every vertex in our semantic graph connects to other k − 1
labeled images, the Laplacian matrix of G is nonsingular.

3. EXPERIMENTS

3.1. Experiment Setup

The performance of our approaches is evaluated on the stan-
dard Paris[13] dataset. Since it is relatively small including
6414 images of 11 landmarks, we establish a larger dataset
called France. This dataset is crawled from Bing, Flickr and
Google using queries for famous 78 France landmarks and
24 artworks in Louvre Museum, such as Amphi Theater and
Mona Lisa, including 102 classes of 86717 images. We al-
so select the same 55 queries of Paris dataset as the queries



Fig. 2. Randomly selected images from the France dataset

of France dataset. As for low-level visual features, Harris-
Laplace detectors [14] and SIFT descriptors [15] are used to
describe the local visual information. Images are represented
as bags of words with standard tf-idf scheme. We apply vo-
cabulary tree [16] to train a vocabulary of 106 visual words.
In the experiments, the following parameters are used: num-
ber of connected vertices for each target node k = 10, number
of top nodes initially selected for confident samples detection
m = 10, and α = 0.01 .

Besides, we use Average Precision to evaluate the perfor-
mance of each query which is the area under the precision-
recall curve. A mean AP (mAP) is calculated by averaging
APs of all queries to assess a dataset.

3.2. Graph Construction and Parameters Selection

Firstly, for Paris dataset we simply use the standard offered
tags for each images to build the semantic graph, while for
France dataset images are downloaded with tags.

Parameter variation: We compare the performance of
different r and l. We calculate the mAP with diffrent r with
setting l shown in Fig.3. The performance is relatively high
when r falls between 19 and 24. In the following experiment
shown in Fig.4, we set r = 20 and vary l. The mAP tend to be
steady when r is greater than 12. Therefore we select r = 20
and l = 14 and the mAP reaches 0.786 and 0.724 on Paris
and France dataset respectively.

Graph Re-construction: Although the mAP for Paris
dataset is relatively high (0.786) when tested on the previous
semantic graph, a few queries including Eiffel-3 and Trimphe-
5 fail. One reason for the failure is that a class called Gener-
al contains images with various tags belonging to different
landmarks, however, we take it as an independent class when
building our graph. Another reason is that there is some mis-
labeled images, such as Trimphe-5 image which is labeled as
Defense. Therefore, we relabeled the images in class Gen-
eral and build a new semantic graph. The mAP is improved
to 0.826. The retrieval performance of two semantic graph is
shown in Fig. 4.

3.3. Performance Comparison

We compare our approach with the state-of-art reranking al-
gorithms running on the Paris dataset.

a. Top N reranking: a baseline where top N images are
selected as confident samples and relation graph is built only
based on visual similarity.
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Fig. 3. Selection of r on Paris and France dataset. l = 6.
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l Paris France
1 0.589 0.238
5 0.742 0.622

10 0.782 0.710
12 0.784 0.719
14 0.786 0.724
15 0.786 0.724
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Fig. 4. Selection of l on Paris and France dataset. r = 20.

b. K-reciprocal Nearest Neighbors (KRNN): proposed
by D.Qin et al. [17] where different similarity measures are
used for different parts of initial ranking list.

c. Total recall II (TR II): proposed by O.Chum et al.
[6] where the confident samples are selected through confuser
filtering and then applied to incremental spatial reranking.

The retrieval performance of each algorithm on Paris
dataset is displayed in Table 1. It shows that our approach
have reached the state-of-the-art results, which outperforms
the KRNN and TR II 2.3% and 2.1% respectively on their
best results in previous publication.

Table 1. Performance Comparison on Paris Dataset
method Top N KRNN TR II Ours
mAP 0.612 0.803 0.805 0.826
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